胰腺神经内分泌肿瘤g2:BOLD—fMRI联合神经导航显微切除运动区海绵状血管变形

来源:中国现代医生 ·2018年10月21日 18:38 浏览量:0

刘进 王伟明 邱伟文

[摘要] 意图 评论BOLD-fMRI结合神经导航辅佐技能对显微切除运动功用区海绵状血管变形手术中神经功用维护的价值。 办法 将41例海绵状血管变形患者分为导航组(20例)和对照组(21例),导航组予BOLD-fMRI 结合神经导航辅佐下显微手术医治,对照组行惯例海绵状血管变形切除术。比照两组患者术前与术后3个月的KPS评分改动及术后并发症发作率。 成果 术前导航组与对照组KPS评分差异无统计学含义(P>0.05);术后3个月导航组KPS评分高于对照组(P<0.05);导航组术后3个月KPS评分与术前比较显着改进(P<0.05)。 定论 BOLD-fMRI结合神经导航辅佐技能在显微切除运动功用区海绵状血管变形手术中具有维护神经功用的作用。

[要害词] 血氧水平依靠性功用磁共振成像;皮层运动区;神经导航;脑海绵状血管变形

[中图分类号] R739.41 [文献标识码] B [文章编号] 1673-9701(2018)09-0049-04

BOLD-fMRI combined with neuro-navigation microsurgical removal of cavernous vascular malformations

LIU Jin WANG Weiming QIU Weiwen YE Suilin

Department of Neurosurgery, Lishui Peoples Hospital in Zhejiang Province, Lishui 323000, China

[Abstract] Objective To investigate the value of BOLD-fMRI combined with neuro-navigational aids in neurofunctional protection during microsurgical removal of motor function cavernous vascular malformation. Methods A total of 41 patients with cavernous vascular malformations were divided into the navigation group(n=20) and the control group (n=21). The navigation group was given BOLD-fMRI combined with neuronavigation-assisted microsurgery. The control group was given conventional cavernous malformation resection. The changes of KPS score and the incidence of postoperative complications between the two groups before surgery and 3 months after the surgery were compared. Results There was no statistically significant difference in KPS score between the navigation group and the control group before surgery(P>0.05). The score of KPS in navigation group was higher than that in the control group 3 months after surgery(P<0.05); the score of KPS in the navigation group 3 months after the surgery was significantly higher than that before surgery(P<0.05). Conclusion BOLD-fMRI combined with neuro-navigational aids can protect neurological function during microsurgical removal of motor function cavernous vascular malformation.

[Key words] BOLD-fMRI; Motor cortex; Neuronavigation; Cavernous vascular malformation

腦海绵状血管变形(cerebral cavernous malformation,CCM)是一种脑血管变形,CCM人群发病率为0.5%[1]。CCM占中枢神经系统中血管变形的5%~10%[2]。术中怎么防止神经功用受损是功用区CCM显微手术切除的要害。2003年 1月~2013年3月我院神经外科运用BOLD-fMRI结合神经导航技能辅佐下显微手术医治大脑运动功用区CCM20例,获得较好的作用,现报导如下。

1 材料与办法

1.1一般材料

挑选2003年1月~2013年3月我院神经外科显微手术医治大脑运动功用区CCM 41例患者作为研讨目标。依照是否运用BOLD-fMRI结合神经导航技能分为导航组(20例)和对照组(21例)。入组规范:术前MRI确诊运动区CCM,术后病理确诊为CCM。扫除规范:曾进行放疗的CCM 患者[3]。导航组男12例,女8例,年纪21~68岁,均匀(44.20±13.07)岁。发病时刻1周~3年,均匀2个月。对照组男11例,女10例,年纪23~65岁,均匀(43.90±12.77)岁。发病时刻1周~2年,均匀3个月。两组一般材料差异无统计学含义(P>0.05)。1.2 fMRI成像办法

美国GE公司3.0T(Signa HDx)超导磁共振,选用8通道头颅高分辨率相控阵线圈。参数如下:TR/TE:2000/30 ms,FOV=192 mm×192 mm,翻转角90°,矩阵64×64,层厚4 mm,层间隔0.2 mm,层数31。试验选用静息-运动循环形式。一次功用像EPI序列扫描时刻为330 s。患者按要求顺次进行左右手的功用像扫描。静息状况要求患者坚持歇息状况,运动态要求患者进行有序的对指运动。经过GE公司Brainwave软件剖析处理图画。核算每个别素内的信号改动生成激活图。将生成的激活区域图与解剖图相叠加,剖析CCM与运动区的联系(图1、2)。

1.3 导航手术过程

1.3.1 根据导航系统拟定手术计划 患者于手术当日早晨备皮。以海绵状血管变形为中心张贴6~7枚头皮符号,行头颅MRI扫描。成像参数:层厚2 mm,矩阵256×256。将数据输入美敦力神经导航仪。由导航系统进行图画的三维重建,麻醉成功后用Mayfield头颅架固定头颅。凭借神经导航仪规划手术入路及手术堵截,留意避开功用区。

1.3.2 手术过程 切开头皮后用铣刀去除颅骨瓣,剪开硬脑膜前再次用神经导航断定病灶方位及CCM至脑外表的间隔并核算CCM与运动区的空间联系,规划最佳手术入路。显微镜下沿脑沟解剖蛛网膜及软脑膜,留意维护功用区。少数渗血可运用速即纱压榨止血。沿脑沟别离显露出CCM,堵截血供后完好切除CCM及周围的含铁血黄素层。对照组根据术前头颅MRI成果规划手术堵截,依照惯例办法在显微镜下切除CCM。

1.4 点评规范

KPS评分表明患者的功用状况,100 分正常,70分日子可自理,得分越高功用状况越好。对患者手术前后进行 KPS 评分,点评患者手术前后功用改变[4]。

1.5 统计学办法

运用SPSS 17.0统计学软件对数据进行剖析,计量材料以均数±规范差(x±s)表明,两组比较选用t查验,多组比较选用单因素方差剖析;计数材料选用χ2查验。P<0.05为差异有统计学含义。

2 成果

2.1两组患者手术前与术后3个月KPS评分比较

运用BOLD-fMRI结合神经导航技能辅佐下显微手术医治20例运动功用区CCM,术中神经导航仪定位精确(注册差错<1 mm)。术后未引起永久性神经功用危害。根据Karnofsky评分表对生计质量进行计分,剖析患者手术前与术后3个月KPS计分。得分越高,神经功用康复越好。术前导航组与对照组KPS评分差异无统计学含义(P>0.05);术后3个月导航组KPS评分高于对照组(P<0.05);导航组术前KPS计分为(76.5±16.94)分,术后3个月KPS计分为(91.5±7.45)分,与术前比较有显着差异(P<0.05)。

2.2患者并发症状况

导航组肺部感染2例,颅内感染0例,感觉麻痹1例,肌力较术前下降0例,并发症发作率为15.00%;对照组肺部感染3例,颅内感染1例,感觉麻痹2例,肌力较术前下降1例,并发症发作率为33.33%。两组并发症发作率比较有显着性差异(P<0.05)。

3 评论

运动区CCM的临床特色首要有癫痫、头痛、偏瘫、局灶性神经功用缺失等[5]。癫痫是运动功用区CCM最常见的临床表现。因为CCM缺少血脑屏障导致红细胞漏出构成含铁血黄素环是引起癫痫的首要原因[6]。运动功用区CCM急性出血或自身的占位效应引起患者呈现神经功用危害[7]。运动区首要包含:(1)初级运动区(M1);(2)次級运动区:辅佐运动区(supplementary motor area,SMA)、前额叶皮层(prefrontal cortex)、运动前区皮层(premotor cortex,PMC)及后顶叶皮层(posterior parietal cortex,PPC)等[8]。M1区又可分为腹侧的M1-4a区和背侧的M1-4p区[9]。M1-4a 区担任运动的履行[10]。M1-4p区能感觉运动,并调理运动[11]。

BOLD-fMRI可以明晰的显现出大脑的解剖结构图画,并且能无创的显现大脑皮层的功用信息改变然后定位功用区,该技能对初级运动区(M1)和辅佐运动区的定位精确性较佳[12],BOLD-fMRI对言语功用区定位的敏感度37.1%,特异性83.4%[13]。Wengenroth等[14]研讨发现术前BOLD-fMRI可准断定位中心区。Bizzi等[15]经过对34例患者的前瞻性研讨报导,BOLD-fMRI敏感度83%,特异度82%。Bartos等[16]报导与皮层电影响比较,BOLD-fMRI对77%的患者功用区定位差错不超越5 mm。BOLD-fMRI可以准断定位功用区,无侵袭性、图画直观,能供给运动区的印象信息为术前拟定手术计划供给牢靠根据。Slotty PJ等[17]报导在神经导航辅佐下经过小堵截切除方位较深的CCM。Enchev YP等[18]报导在深部CCM切除术中,神经导航有利于拟定最安全的手术计划[19]。术中神经导航可以协助术者辨认要害的解剖结构,评价手术进程,辨认可能的剩余病灶。神经导航指引下手术有助于进步安全性,下降手术致残率[20]。形成神经导航精确度下降的原因首要有注册差错、脑漂移。术前应经过以下办法下降注册差错:(1)术前标志应贴在头皮不容易移位的方位,标志不少于6枚。(2)头颅架固定过程中不能使皮肤移位。术中脑漂移对神经导航的精确度影响最高,应选用以下办法下降:(1)术前摆放体位时应使CCM坐落最高的方位,削减手术过程中脑安排因重力影响向侧方移动。(2)手术过程中尽可能的削减手术操作引起的脑移位。(3)手术过程中不引流脑脊液,不运用脱水剂。(4)手术操作轻柔,防止损害血管形成脑安排肿胀[21]。

本组患者神经导航术前、术中均能精断定位CCM,为术前断定最优手术入路及术中引导术者全切CCM供给了极大的协助。神经导航技能对手术中精断定位CCM有严重指导作用。BOLD-fMRI、神经导航是运动功用区CCM外科医治有用的辅佐技能,这些技能的联合运用可以更精确的定位病灶和运动功用区,有利于最大规模的切除病灶和最小的神经损害[22]。BOLD-fMRI联合神经导航可以准断定位CCM和功用区,极大的进步了手术的安全性。导航组20例CCM术中均未发作误损害运动区导致术后神经功用障碍的状况。术后KPS 计分与术前比较显着改进(P<0.05)。

綜上,BOLD-fMRI结合神经导航辅佐技能在显微切除运动功用区CCM手术中具有维护神经功用的作用。

[参考文献]

[1] Maddaluno L,Rudini N,Cuttano R,et al.End MT contributes to the onset and progression of cerebral cavernous malformations[J]. Nature,2013,498(7455):492-496.

[2] Dziedzic T,Kunert P,Matyja E,et al.Familial cerebral cavernous malformation[J].Folia Neuropathol,2012,50(2):152-158.

[3] 吴红记,张文君,贾同乐,等.脑多发海绵状血管变形的手术医治[J].世界神经病学神经外科学杂志,2016,43(3):198-201.

[4] 蔡洪,李捷萌,黄桂锋.中医药辅佐FOLFOX-4化疗计划医治晚期直肠癌作用及对KPS评分的影响[J]. 有用中西医结合临床,2016,16(5):34-36.

[5] Slotty PJ,Ewelt C,Sarikaya-Seiwert S,et al.Localization techniques in resection of deep seated cavernous angiomas-review and reevaluation of frame based stereotactic approaches[J].Br J Neurosurg,2013,27(2):175-180.

[6] Matsuda R,Coello AF,De Benedictis A,et al.Awake mapping for resection of cavernous angioma and surrounding gliosis in the left dominant hemisphere:Surgical technique and functional results[J].J Neurosurg. 2012,117(6):1076-1081.

[7] Jung YJ,Hong SC,Seo DW,et al.Surgical resection of cavernous angiomas located in eloquent areas-clinical research[J]. Acta Neurochir Suppl,2006,99:103-108.

[8] Krause V,Schnitzler A,Pollok B,et a1.Functional network interactions during sensorimotor synchronization in musicians and non-musicians[J]. Neuroimage,2010,52(1):245-251.

[9] Eickhoff SB,Heim S,Zilles K,et al.A systems perspective on the effective connectivity of overt speech production[J].Philos Trans A Math Phys Eng Sci,2009,367(1896):2399-2421.

[10] Rathelot JA,Strick PL.Subdivisions of primary motor cortex based on cortico-motoneuronal cells[J].Proc Natl Acad Sci USA,2009,106(3):918-923.

[11] Sharma N,Jones PS,Carpenter TA,et al.Mapping the involvement of BA 4a and 4p during Motor Imagery[J]. Neuroimage,2008,41(1):92-99.

[12] Choo PL,Gallagher HL,Morris J,et al.Correlations between arm motor behavior and brain function following bilateral arm training after stroke:A systematic review[J].Brain Behav,2015,5(12):e00411.

[13] Kuchcinski G,Mellerio C,Pallud J,et al.Three-tesla functional MR language mapping:comparison with direct cortical stimulation in gliomas[J].Neurology,2015,84(6):560-568.

[14] Wengenroth M,Blatow M,Guenther J,et al.Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex[J]. Eur Radiol,2011,21(7):1517-1525.

[15] Bizzi A,Blasi V,Falini A,et al.Presurgical functional MR imaging of language and motor functions:Validation with intraoperative electrocortical mapping[J]. Radiology,2008,248(2):579-589.

[16] Bartos R,Jech R,Vymazal J,et al.Validity of primary motor area localization with fMRI versus electric cortical stimulation:A comparative study[J]. Acta Neurochir(Wien),2009,151(9):1071-1080.

[17] Slotty PJ,Ewelt C,Sarikaya-Seiwert S,et al.Localization techniques in resection of deep seated cavernous angiomas-review and reevaluation of frame based stereotactic approaches[J].Br J Neurosurg,2013,27(2):175-180.

[18] Enchev YP,Popov RV,Romansky KV,et al.Neuronavigated surgery of intracranial cavernomas--enthusiasm for high technologies or a gold standard[J]. Folia Med(Plovdiv),2008,50(2):11-17.

[19] Kumar A,Chandra PS,Sharma BS,et al.The role of neuro navigation-guided functional MRI and diffusion tensor tractography along with cortical stimulation in patients with eloquent cortex lesions[J].Br J Neurosurg,2014,(28):226.

[20] Zhao J,Wang Y,Kang S,et al. The benefit of neuronavigation for the treatment of patients with intracerebral cavernous malformations[J].Neurosurg Rev,2007,30(4):313-318.

[21] Cho JM,Kim EH,Kim J,et al. Clinical use of diffusion tensor image-merged functional neuronavigation for brain tumor surgeries:Review of preoperative,intraoperative,and postoperative data for 123 cases[J]. Yonsei Med J,2014,55(5):1303-1309.

[22] Miao XL,Chen ZJ,Yang WD,et al.Intraoperative magnetic resonance imaging-guided functional neuronavigation plus intraoperative neurophysiological monitoring for microsurgical resection of lesions involving hand motor area[J].Zhonghua Yi Xue Za Zhi,2013,93(3):212-214.

(收稿日期:2017-10-20)

  • 2017百度AI开发者大会

    2017百度AI开发者大会

2008~2017 爱康网 Inc. All rights reserved.